

Seminar Nasional Insinyur Profersional (SNIP)

Alamat Prosiding: snip.eng.unila.ac.id

Pembuatan dan Karakterisasi γ -Al $_2$ O $_3$ -SiO $_2$ sebagai Penyangga Adsorben untuk Penyisihan SO $_2$ dari Gas Cerobong PLTU-Batubara

D. Bahrin^{a,b}, M. Rizwan Rb., D. Fauzan Tb, D. Despa^c, Septiana^b, T.E Agustina^b, P. Conniwanti^b, Selpiana^b

- ^aProdi Program Profesi Insinyur, Universitas Lampung, Jl. Prof. Soemantri Brojonegoro, Bandar Lampung 35145
- ^bProdi Teknik Kimia, Universitas Sriwijaya, Jl. Palembang-Prabumulih, KM 32 Inderalaya, 30662
- ^cProdi Teknik Elektro, Universitas Lampung, Jl. Prof. Soemantri Brojonegoro, Bandar Lampung 35145
- ^aProdi Teknik Informatika, Universitas Lampung, Jl. Prof. Soemantri Brojonegoro, Bandar Lampung 35145

INFORMASI ARTIKEL

ABSTRAK

Riwayat artikel: Diterima 6 Maret 2023 Direvisi 21 Maret 2023 Diterbitkan 12 April 2023

Kata kunci: Adsorben γ-Al₂O₃-SiO₂ Kalsinasi Penyangga Sifat pori

Pembakaran batubara dengan kadar sulfur lebih dari 0,23%-berat (dry basis) dengan udara pembakaran berlebih 50% pada Pembangkit Listrik Tenaga Uap (PLTU) batubara dapat menghasilkan SO₂ diatas baku mutu emisi yang ditetapkan oleh pemerintah. Penyisihan gas SO₂ dari gas cerobong PLTU-batubara dapat melalui proses adsorpsi menggunakan adsorben padat dengan fasa aktif seperti CuO, MgO, CaO, CeO2 yang ditempelkan pada penyangga berbasis oksida logam baik tunggal maupun campuran diantaranya adalah γ-Al₂O₃, SiO₂, TiO₂. Penggunaan campuran γ-Al₂O₃ dan SiO₂ sebagai penyangga didasarkan pada beberapa pertimbangan diantaranya adalah luas permukaan dan volume pori-pori yang besar dan stabilitas termal yang baik. Campuran senyawa γ-Al₂O₃-SiO₂ dibuat dengan metode sol gel menggunakan senyawa AlCl₃.6H₂O dan boehmite sebagai sumber γ-Al₂O₃ dan natrium silikat dan Siral-10 sebagai sumber SiO2. Variabel penelitian meliputi komposisi campuran γ-Al₂O₃ dan SiO₂ diperoleh dengan memvariasikan konsentrasi SiO₂ dalam larutan natrium silikat (4, 6, 8 dan 10 % v/v) dan temperatur kalsinasi (550, 650 dan 750°C). Hasil penelitian memperlihatkan bahwa variasi konsentrasi SiO₂ (% v/v) dalam larutan natrium silikat menghasilkan penyangga dengan sifat pori yang cenderung mirip. Kenaikan temperatur kalsinasi mempengaruhi sifat pori penyangga γ-Al₂O₃-SiO₂. Luas permukaan, total volume pori dan radius pori rata-rata penyangga γ-Al₂O₃-SiO₂ terbaik diperoleh pada temperatur kalsinasi 550°C masing-masing sebesar 293,724 m²/g; 1,0580 cc/g; dan 67,33Å

1. Pendahuluan

Gas SO_2 adalah salah satu polutan penyebab utama hujan asam yang terutama dihasilkan dari pembakaran bahan bakar yang mengandung sulfur. Pembakaran batubara dengan kadar sulfur lebih dari 0,23%-berat ($dry\ basis$) dengan udara pembakaran berlebih 50% menghasilkan emisi SO_2 diatas baku mutu emisi yang ditetapkan oleh pemerintah (Bahrin, 2017).

Penyisihan SO_2 dari gas cerobong PLTU-batubara dapat menggunakan adsorben berbasis oksida logam maupun campuran oksida. Senyawa CuO/γ - Al_2O_3 telah banyak diteliti sebagai adsorben untuk penyisihan SO_2 dari gas cerobong pembangkit listrik berbahan bakar batubara. Penggunaan senyawa γ - Al_2O_3 sebagai penyangga adsorben memiliki kelebihan seperti luas permukaan besar, mesodan makroporosity, dan relatif stabil pada temperatur tinggi (500-600°C). Namun demikian, penggunaan pada temperatur lebih dari 600°C, dapat menyebabkan struktur porosnya menghilang

karena adanya sintering dan perubahan fase kristalin γ -Al₂O₃ menjadi α -Al₂O₃ (Mardkhe, dkk. 2015). Perubahan fase kristalin γ -Al₂O₃ menyebabkan penurunan drastis pada luas permukaan dan ukuran pori. Hal inilah yang menyebabkan kemampuan adsorben berpenyangga γ -Al₂O₃ dalam menyerap SO₂ turun saat penggunaan pada temperatur lebih dari 600°C (Bahrin, 2017). Kapasitas adsorpsi SO₂ adsorben CuO/ γ -Al₂O₃ dipengaruhi oleh banyaknya jumlah fasa aktif CuO yang menempel pada penyangga. Luas permukaan penyangga yang besar lebih disukai karena fasa aktif CuO dapat terdispersi dengan baik dan merata pada permukaan penyangga (Bahrin, 2017).

Beberapa penelitian memperlihatkan bahwa rasio mol CuO dan SO_2 pada proses adsorpsi rata-rata mendekati 1 dan bahkan ada yang lebih dari satu. Secara stoikiometri, reaksi CuO dan SO_2 dengan bantuan O_2 memiliki rasio mol 1:1. Rasio mol yang lebih dari satu disebabkan karena penyangga γ -Al₂O₃ ikut bereaksi dengan SO_2 membentuk $Al_2(SO_4)_3$ (Yoo dkk., 1996;

Xie dkk., 2002; David dkk., 2016). Hal ini disebabkan karena adanya reaksi katalitik dimana senyawa SO_4 dalam $CuSO_4$ bergeser dan bereaksi dengan senyawa γ - Al_2O_3 membentuk $Al_2(SO_4)_3$ saat proses berlangsung lama dan ketersediaan CuO rendah (Bahrin, 2017).

Penambahan silika pada konsentrasi tertentu saat pembuatan penyangga γ -Al $_2$ O $_3$ dapat meningkatkan stabilitas *thermal* penyangga (Horiuchi dkk., 1999; Kosuge dan Ogata, 2010; Mardkhe dkk., 2015). Selain itu, penambahan SiO $_2$ dapat meningkatkan kekuatan penyangga dan mengubah sifatnya yang lebih tahan terhadap asam dan uap air (Mardkkhe dkk., 2015). Namun penambahan SiO $_2$ yang lebih banyak mengakibatkan penyangga menjadi lebih cepat jenuh terutama saat digunakan sebagai penyangga adsorben pada proses penjerapan gas yang mengandung uap air karena sifat SiO $_2$ yang *hidrofobik* (suka air).

Penelitian yang dilakukan oleh Wittayakun dkk., 2002 memperlihatkan bahwa adsorben berpenyangga modernit yang terdiri SiO_2 dan Al_2O_3 lebih cepat mengalami kejenuhan dibandingkan dengan katalis berpenyangga Al_2O_3 murni. Penelitian Wittayakun dkk, 2002 memperlihatkan juga bahwa adsorben CuO/MOR15 (perbandingan Si dan Al dalam berat = 15) memiliki kapasitas adsorpsi yang lebih besar dibandingkan dengan adsorben CuO/MOR19 (perbandingan Si dan Al = 19).

Silika-alumina merupakan padatan paduan silika dan alumina yang memiliki porositas tingi dengan diameter pori berukuran meso sehingga memiliki luas permukaan yang tinggi. Luas permukaan yang besar pada silika-alumina sangat menguntungkan dalam penggunaannya sebagai bahan pendukung adsorben. Silika-alumina dapat disintesis dengan metode sol-gel. Keuntungan metode sol-gel diantaranya yaitu relatif mudah dilakukan, tidak memerlukan waktu yang lama dan memiliki homogenitas yang tinggi. Metode sol-gel juga lebih unggul dibandingkan dengan metode lainnya karena untuk mendapatkan komposit padat yang homogen dengan cara pembentukan suspensi koloid yang berbentuk gel melalui proses gelasi sol pada temperatur ruang.

Penelitian pembuatan penyangga berbasis alumina-silika telah banyak dilakukan oleh peneliti lain, Namun umumnya digunakan sebagai penyangga katalis. Penelitian yang dilakukan oleh Kholilur dkk (2015), menggunakan bahan-bahan natrium silikat sebagai sumber SiO₂, dan AlCl₃.6H₂O sebagai sumber γ-Al₂O₃. Sedangkan penelitian yang dilakukan oleh Khosvari, dkk (2016), menggunakan bahan Aluminum isopropoxide (C₉H₂₁O₃Al) (granular, 98%) sebagai sumber γ-Al₂O₃ and *tetraethyl orthosilicate* (SiC₈H₂₀O₄) atau TEOS (liquid, 99.9%) yang didapat dari Alfa-Aeser sebagai sumber SiO₂ serta Silica-doped alumina (Siral-5) didapat dari Sasol.

Analisis Brunauer Emmet Teller (BET) digunakan untuk mengukur luas permukaan (surface area). Adsorpsi merupakakan suatu sarana yang dapat digunakan untuk mengkarakterisasi material berpori, seperti menentukan luas permukaan, distribusi ukuran pori dan porositas. Ketika fase gas atau uap (adsorbat) dikontakkan dengan permukaan padat, gas atau uap tersebut dapat terasorpsi secara fisikawi dengan adanya interaksi Van der Waals (Mardkhe, 2014).

Scanning Electron Microscopy (SEM) digunakan untuk studi detil strukur permukaan sel (atau struktur jasad renik lainnya), dan obyek diamati secara tiga dimensi (Abdullah, 2012). Cara terbentuknya gambar pada SEM berbeda dengan apa yang terjadi pada mikroskop optik dan TEM. Pada SEM, gambar dibuat berdasarkan deteksi elektron baru (elektron sekunder) atau elektron pantul yang muncul dari permukaan sampel ketika permukaan sampel tersebut dipindai dengan sinar

elektron. Elektron sekunder atau elektron pantul yang terdeteksi selanjutnya diperkuat sinyalnya, kemudian besar amplitudonya ditampilkan dalam gradasi gelap-terang pada layar monitor CRT (*Cathode Ray Tube*). Di layar CRT inilah gambar struktur obyek yang sudah diperbesar bisa dilihat. Pada proses operasinya, SEM tidak memerlukan sampel yang ditipiskan, sehingga bisa digunakan untuk melihat obyek dari sudut pandang 3 dimensi. (Figza A. dan Andy B., 2014).

2. Metodologi

2.1 Bahan yang digunakan

Bahan yang digunakan adalah natrium silikat, aquades, asam asetat, amonia dan AlCl₃.6H₂O.

2.2 Peralatan pendukung

Peralatan yang digunakan pada penelitian ini adalah oven, furnace, beaker glass 500 mL, termometer 200°C, gelas ukur 100 mL, stirrer, pengaduk kaca, pipet ukur 10 mL, spatula, neraca analitik, sendok, pH meter, erlenmeyer 250 mL, beaker glass 100 mL, dan gelas ukur 10 mL.

2.3 Prosedur percobaan

10 gram AlCl₃.6H₂O dilarutkan dalam 100 mL akuades dan ditambahkan 10 mL asam asetat 99% untuk membuat Larutan I. Sebuah larutan natrium silikat encer 4%, 6%, 8%, dan 10% SiO₂ (Larutan II) dibuat dengan mengencerkan larutan natrium silikat pekat dengan 100 mL akuades. Larutan natrium silikat (Larutan II) secara bertahap tetes demi tetes ditambahkan ke dalam larutan aluminium (Larutan I) dengan pengadukan untuk mempersiapkan Larutan III. Larutan ammonia 8% ditambahkan secara bertahap tetes demi tetes pada Larutan III yang mengandung sol silika dan alumina dengan pengadukan. Bubur gel *diaging* pada suhu kamar selama 2-3 jam. Gel silika-alumina yang terbentuk disaring untuk menghasilkan endapan gel.

Endapan akhir dikeringkan pada suhu 120°C semalam dengan oven. Padatan kering silika-alumina dihancurkan dan dikalsinasi pada suhu 550, 650, dan 750°C selama 2 jam untuk aktivasi. Uji karakteristik penyangga γ-Al₂O₃-SiO₂ yang dilakukan adalah analisa sifat pori meliputi luas permukaan spesifik (Brunauer-Emmett-Teller/BET), volume pori dan diameter pori rata-rata menggunakan peralatan Quadrasorb SI Surface area analyzer versi 5.06. Selanjutnya morfologi permukaan penyangga γ-Al₂O₃-SiO₂ diamati menggunakan peralatan foto permukaan penyangga SEM tipe JED-2200 series.

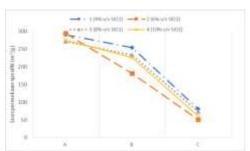
3. Hasil dan Pembahasan

Penyangga γ -Al $_2$ O $_3$ -SiO $_2$ yang telah disentesa kemudian dianalisa sifat porinya meliputi luas permukaan spesifik (BET), total volume pori dan diameter pori rata-rata (adsorpsi-desorpsi N $_2$). Selanjutnya morfologi permukaan penyangga diamati menggunakan peralatan foto permukaan penyangga SEM. Pengaruh temperatur kalsinasi dan konsentrasi larutan Na $_2$ SiO $_3$ terhadap hasil analisa BET dan SEM kemudian dibahas pada sub bab di bawah.

3.1 Pengaruh Temperatur Kalsinasi terhadap Luas Permukaan Spesifik

Temperatur kalsinasi diyakini akan berpengaruh terhadap luas permukaan spesifik penyangga γ-Al₂O₃-SiO₂. Tabel hasil analisa luas permukaan spesifik penyangga γ-Al₂O₃-SiO₂ yang diuji menggunakan metode BET dan adsorpsi-desorpsi N₂ pada berbagai variasi temperatur kalsinasi (550, 650, dan 750°C) dan

konsentrasi SiO₂ dalam larutan Na₂SiO₃ (4, 6, 8, dan 10%-v/v) ditampilkan pada Tabel 1.


Pada Tabel 1 terlihat bahwa luas permukaan spesifik terbesar didapat pada temperatur kalsinasi 550°C sebesar 293,724 m²/g dan luas permukaan spesifik terkecil didapat pada temperatur kalsinasi 750°C sebesar 50,898 m²/g. Luas permukaan spesifik γ-Al₂O₃-SiO₂ yang diperoleh pada penelitian ini lebih besar dibandingkan dengan hasil penelitian yang dilakukan oleh Rohman dan Maharani (2014) yang menggunakan konsentrasi SiO₂ dalam larutan Na₂SiO₃ sebesar

8%-v/v. Hal ini dapat disebabkan karena penyangga γ -Al $_2$ O $_3$ -SiO $_2$ yang dihasilkan oleh Rohman dan Maharani (2014) telah bercampur dengan Cu/Zn sehingga menurunkan luas permukaan spesifiknya. Hasil analisis dengan metode BET memperlihatkan bahwa luas permukaan spesifik campuran oksida logam Cu/Zn/SA pada temperatur kalsinasi 550, 650, dan 750°C berturut-berturut adalah 136,070; 136,713; dan 104,819 m 2 /g (Rohman dan Maharani, 2014).

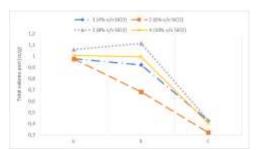
Tabel 1 Karakteristik penyangga γ-Al ₂ O ₃ -SiO ₂ pada berbagai temperatur kalsinasi dan
konsentrasi larutan natrium silikat

Kode Sampel	Suhu kalsinasi (°C)	Larutan natrium silikat (% v/v SiO ₂)	Karakteristik penyangga γ-Al ₂ O ₃ -SiO ₂		
			Luas Permukaan (m²/g)	Total Volume (mL/g)	Diameter Pori Rata-rata (Å)
A1	550	4	290,03	0,976	67,33
A2		6	293,72	0,974	66,34
A3		8	271,37	1,058	78,01
A4		10	275,53	1,006	72,99
B1	650	4	253,70	0,922	72,72
B2		6	181,14	0,682	75,28
В3		8	232,86	1,113	95,56
B4		10	225,62	0,994	88,13
C1	750	4	81,37	0,427	105,00
C2		6	50,90	0,321	126,00
C3		8	73,18	0,431	117,80
C4		10	60,74	0,403	132,70

Target yang ingin dicapai dari penelitian ini adalah mendapatkan hasil $\gamma\textsc{-}\mathrm{Al}_2\mathrm{O}_3\textsc{-}\mathrm{SiO}_2$ dengan luas permukaan yang paling besar karena dengan semakin besarnya luas permukaan maka akan semakin banyak adsorben ataupun katalis yang dapat melekat pada $\gamma\textsc{-}\mathrm{Al}_2\mathrm{O}_3\textsc{-}\mathrm{SiO}_2$ yang nantinya akan digunakan sebagai penyangga. Luas permukaan spesifik yang besar memungkinkan penyebaran inti aktif yang lebih banyak sehingga aktivitas adsorben akan meningkat dan bekerja lebih efektif (Rohman dan Maharani, 2014). Pengaruh temperatur kalsinasi terhadap luas permukaan spesifik penyangga $\gamma\textsc{-}\mathrm{Al}_2\mathrm{O}_3\textsc{-}\mathrm{SiO}_2$ secara jelas dapat dilihat pada Gambar 1 berikut ini.

Gambar 1. Luas permukaan spesifik γ-Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)

Pada Gambar 1 terlihat bahwa semakin tinggi temperatur kalsinasi maka luas permukaan $\gamma\text{-}Al_2O_3\text{-}SiO_2$ semakin menurun. Hal ini dikarenakan pada temperatur kalsinasi yang lebih rendah masih mengandung hidrat yang mempengaruhi morfologi dan luas permukaannya. Rendahnya temperatur pemanasan akan menyebabkan luas permukaannya semakin besar dikarenakan sampel masih mengandung kristal air sehingga menambah luas permukaan aktifnya (Widyantoro, 2013). Penurunan luas permukaan


juga disebabkan oleh adanya *sintering*, karena pada temperatur tinggi (diatas 600°C) struktur poros γ -Al₂O₃ mulai menghilang karena adanya *sintering* dan terjadi perubahan fase kristalin menjadi α -Al₂O₃ yang menyebabkan perubahan drastis terhadap luas permukaan dan ukuran pori (Mardkhe, dkk. 2014).

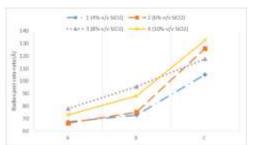
3.2 Pengaruh Temperatur Kalsinasi terhadap Total Volume Pori

Wang dan Lin (1998) melakukan percobaan terhadap adsorpsi SO₂ meggunakan adsorben CuO/γ-Al₂O₃. Dalam percobaan tersebut mereka mendapatkan adsorben CuO/γ-Al₂O₃ dengan volume pori sebesar 0,49 cc/g. Buena dan Lin (2008) juga melakukan percobaan yang hampir serupa dan mendapatkan volume pori CuO/γ-Al₂O₃ sebesar 0,48 cc/g. Dengan volume pori sebesar itu didapat kapasitas adsorpsi SO₂ adsorben sebesar 147,2mg SO₂/g *sorbent*. Sedangkan Macken dan Hodnett (2000) mendapatkan adsorben CuO/γ-Al₂O₃ dengan volume pori sebesar 0,97 cc/g dan kapasitas adsorpsi SO₂ adsorbennya didapat lebih kecil dibandingkan dua penelitian sebelumnya yaitu sebesar 61,6704mg SO₂/g sorbent. Dapat dikatakan besar volume pori γ-Al₂O₃-SiO₂ yang dapat digunakan sebagai penyangga berada dalam rentang 0,4-1,0 cc/g dengan kapasitas adsorpsi SO₂ terbaik didapat pada volume pori penyangga sebesar 0,48 cc/g sesuai dengan penelitian yang dilakukan Buelna dan Lin (2008). Pada penelitian ini hasil volume pori penyangga γ-Al₂O₃-SiO₂ yang mendekati besar volume pori tersebut didapat pada temperatur kalsinasi 750°C dengan nilai volume pori penyangga γ-Al₂O₃-SiO₂ sebesar 0,4310 cc/g.

Semakin tinggi temperatur kalsinasi maka total volume pori γ-Al₂O₃-SiO₂ cenderung menurun dengan total volume pori terbesar 1,113 cc/g pada temperatur kalsinasi 650°C dan total volume pori terkecil 0,3208 cc/g pada temperatur

kalsinasi 750°C. Penurunan total volume pori penyangga γ -Al₂O₃-SiO₂ seiring dengan naiknya temperatur kalsinasi dalam pembuatan γ -Al₂O₃-SiO₂ dapat dilihat jelas pada Gambar 2.

Gambar 2. Total volume pori γ -Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)


Luas permukaan spesifik berbanding lurus dengan total volume pori, semakin kecil total volume pori maka luas permukaan spesifik juga akan semakin kecil. Volume pori yang terlalu besar akan berpengaruh terhadap tingkat kekerasan γ-Al₂O₃-SiO₂ dimana semakin besar volume pori maka γ-Al₂O₃-SiO₂ yang dihasilkan akan semakin rapuh. Volume pori berkaitan dengan porositas, dimana porositas pada suatu material dinyatakan dalam (%) rongga fraksi volume dari suatu rongga yang ada dalam material tersebut. Besarnya porositas pada suatu material bervariasi mulai dari 0% sampai dengan 90% tergantung dari jenis dan aplikasi material tersebut. Semakin banyak porositas yang terdapat pada benda uji maka semakin rendah kekuatan mekanikalnya atau dengan kata lain penyangga menjadi semakin rapuh, begitu pula sebaliknya (Huda dan Hastuti, 2012). Target yang ingin dicapai dari penelitian ini adalah mendapatkan hasil γ-Al₂O₃-SiO₂ yang tidak mudah hancur sehingga penyangga dapat bekerja dengan baik. Hasil γ-Al₂O₃-SiO₂ dengan kode A2 yang memiliki total volume pori sebesar 0,9743 cc/g diuji kekuatan mekaniknya menggunakan alat uji remuk dan didapatkan kekuatan mekaniknya sebesar 0,2026 kg/mm. Kekuatan mekanik sebesar itu masih terlalu kecil jika dibandingkan dengan kekuatan mekanik dari γ-Al₂O₃ komersil dimana dengan total volume pori 0,778 cc/g, γ-Al₂O₃ komersil memiliki kekuatan mekanik sebesar 1,52 kg/mm (Ulfa dan Subagjo, 2012).

3.3 Pengaruh Temperatur Kalsinasi terhadap Radius Pori Rata-rata

Temperatur kalsinasi diyakini akan berpengaruh terhadap radius pori rata-rata penyangga γ -Al $_2$ O $_3$ -SiO $_2$. Berikut ini adalah Tabel hasil analisa radius pori rata-rata pada berbagai variasi temperatur kalsinasi (550, 650, dan 750°C) dan konsentrasi SiO $_2$ dalam larutan Na $_2$ SiO $_3$ (4, 6, 8, dan 10%-v/v).

Radius pori rata-rata penyangga γ -Al $_2$ O $_3$ -SiO $_2$ didapat dalam rentang 60 sampai 140Å. Hasil radius pori rata-rata penyangga γ -Al $_2$ O $_3$ -SiO $_2$ yang didapat sebagian besar masih sesuai dengan radius pori γ -Al $_2$ O $_3$ komersil dimana penyangga γ -Al $_2$ O $_3$ biasanya memiliki radius pori lebih kecil dari 10nm (100Å) (Horiuchi, 1999). Seperti yang telah disebutkan di atas bahwa penelitian Wang dan Lin (1998) serta Buelna dan Lin (2008) mendapatkan hasil adsorben CuO/ γ -Al $_2$ O $_3$ dengan kapasitas adsorpsi SO $_2$ terbaik diantar peneliti lain yaitu sebesar 147,2mg SO $_2$ /g sorbent.

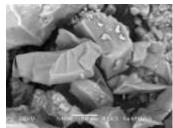
Wang dan Lin (1998) yang melakukan penelitian adsorpsi SO_2 menggunakan adsorben CuO/γ - Al_2O_3 mendapatkan hasil sintesa penyangga γ - Al_2O_3 dengan radius pori sebesar 75Å. Buelna dan Lin (2008) juga mendapatkan hasil yang hampir sama yaitu 74Å. Pada penelitian ini hasil radius pori rata-rata penyangga γ - Al_2O_3 - SiO_2 yang hampir serupa didapat pada temperatur kalsinasi 650°C dengan besar radius pori rata-rata 75,25Å. Data hasil analisa diatas kemudian diubah kedalam bentuk grafik yang ditunjukkan oleh Gambar 3.

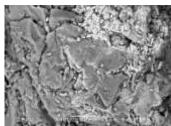
Gambar 3. Radius pori rata-rata γ-Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)

Menurut Horiuchi dkk. (1999), temperatur kalsinasi yang tinggi menyebabkan jumlah *macropores* berkurang banyak sedangkan jumlah *mesopores* tetap. Pori dalam sampel penyangga γ-Al₂O₃-SiO₂ dapat dibagi-bagi menjadi beberapa bagian sehingga menghasilkan beberapa radius untuk setiap pori. Sebagai contoh digunakan sampel 4%-v/v SiO₂ dengan variasi temperatur 550, 650, dan 750°C. Pada temperatur 550°C, pori yang terbentuk memiliki ukuran yang besar dan memiliki radius pori rata-rata 66,34Å. Ini artinya radius pori dengan ukuran 66,34Å memiliki jumlah yang paling banyak di dalam setiap m² sampel dibandingkan dengan radius pori yang lain.

Ketika temperatur kalsinasi naik pori yang tadinya memiliki ukuran yang besar mengalami penyempitan yang berdampak pada radius pori dalam tiap pori. Radius pori dengan ukuran 66,34Å akan berkurang jumlahnya sehingga jumlah radius pori terbanyak akan digantinkan oleh radius pori lain yang lebih besar. Pada temperatur kalsinasi 650°C radius pori dengan ukuran 75,28Å memiliki jumlah terbanyak dalam setiap m² sampel. Begitu juga ketika temperatur kalsinasi dinaikkan sampai 750°C, ukuran pori akan mengecil dan jumlah radius pori yang sebelumnya paling banyak akan berkurang.

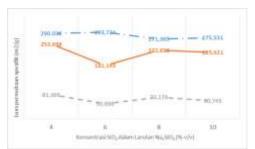
Kenaikan temperatur kalsinasi tidak memperbesar nilai radius pori namun pada setiap kenaikan temperatur kalsinasi, radius pori dengan ukuran yang lebih kecil akan semakin berkurang jumlahnya (kuantitas) sedangkan radius pori yang lebih besar cenderung tetap sehingga ketika dirata-ratakan radius pori yang lebih besar memiliki jumlah (kuantitas) terbanyak.


Semakin tinggi temperatur kalsinasi, ukuran (radius rata-rata) pori meningkat namun volume pori berkurang, menandakan adanya perubahan struktur kristal dinding (Sun, 2007). Meningkatnya temperatur menyebabkan terjadinya perubahan fisis yaitu yang disebut dengan sintering. Sintering adalah proses pengabungan partikel-partikel serbuk melalui peristiwa difusi pada saat temperatur meningkat. Hasil pengukuran porositas menunjukan bahwa porositas menurun seiring dengan peningkatan temperatur.


Penurunan porositas terjadi akibat pengaruh energi panas yang mengaktifkan proses difusi atom antar butiran sehingga terjadi pertumbuhan butir yang dapat menutupi pori-pori. Terjadi proses densifikasi selama fase kenaikan temperatur dalam proses *sintering*, yang memungkinkan terjadinya perubahan struktur dan mikrostruktur, dimana partikel-pertikel saling mengikat sehingga ukuran butiran menjadi

lebih besar (Dahliana, 2012). Berikut ini adalah gambar 4 ilustrasi proses desinfikasi dengan naiknya temperatur kalsinasi. Gambar 4 ini merupakan foto morfologi permukaan penyangga $\gamma\text{-}Al_2O_3\text{-}SiO_3$ yang diambil menggunakan peralatan foto permukaan penyangga SEM tipe JED-2200 series.

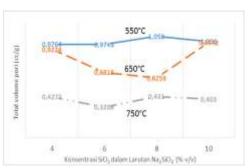
bahwa konsentrasi SiO₂ dalam larutan Na₂SiO₃ vang



Gambar 4. Proses densifikasi dengan naiknya temperature kalsinasi

3.4 Pengaruh Konsentrasi SiO_2 dalam Larutan Na_2SiO_3 terhadap Sifat Pori Penyangga γ - Al_2O_3 - SiO_2

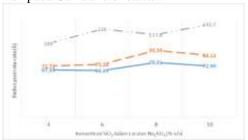
Grafik pengaruh konsentrasi konsentrasi SiO_2 dalam larutan Na_2SiO_3 terhadap luas permukaan spesifik penyangga γ - Al_2O_3 - SiO_2 yang dihasilkan ditunjukkan pada Gambar 5 di bawah ini.



Gambar 5. Luas permukaan γ-Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)

Pada Gambar 5 terlihat bahwa pengaruh konsentrasi SiO₂ dalam larutan Na₂SiO₃ yang ditambahkan dalam pembuatan penyangga γ-Al₂O₃-SiO₂ terhadap permukaan spesifik penyangga cenderung turun namun dengan nilai penurunan yang tidak terlalu signifikan. Hal ini mungkin disebabkan karena perbedaan konsentrasi SiO2 dalam larutan Na₂SiO₃ yang terlalu kecil sehingga pengaruhnya terhadap sifat pori penyangga γ-Al₂O₃-SiO₂ juga kecil. Pada grafik terlihat bahwa untuk temperatur 550°C didapat hasil γ-Al₂O₃-SiO₂ dengan konsentrasi SiO₂ dalam larutan Na₂SiO₃ 4%-v/v memiliki luas permukaan spesifik sebesar 293,724 m²/g, dan luas permukaan spesifik γ-Al₂O₃-SiO₂ pada konsentrasi SiO₂ dalam larutan Na₂SiO₃ 10%-v/v sebesar 275,531 m²/g. Sedangkan untuk temperatur 750°C didapat hasil γ-Al₂O₃-SiO₂ dengan konsentrasi SiO₂ dalam larutan Na₂SiO₃ 4%-v/v memiliki luas permukaan sebesar 81,365 m²/g, dan luas permukaan spesifik γ-Al₂O₃-SiO₂ pada konsentrasi SiO₂ dalam larutan Na₂SiO₃ 10%-v/v sebesasr $60,743 \text{ m}^2/\text{g}$.

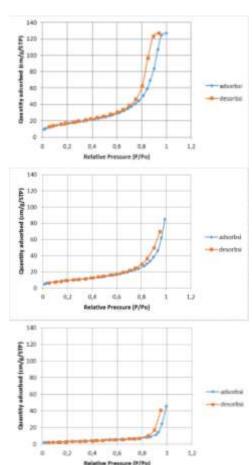
Pengaruh konsentrasi SiO_2 dalam larutan Na_2SiO_3 sebagai sumber SiO_2 yang ditambahkan dalam pembuatan penyangga γ - Al_2O_3 - SiO_2 terhadap total volume pori dapat dilihat pada Gambar 6 di bawah. Pada Gambar 4.6 terlihat


Na₂SiO₃ yang terlalu kecil sehingga pengaruhnya terhadap sifat pori penyangga γ-Al₂O₃-SiO₂ juga kecil.

Gambar 6. Total volume pori γ -Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)

Pada Gambar 6 didapat hasil penyangga γ-Al₂O₃-SiO₂ untuk temperatur 750°C pada konsentrasi SiO₂ dalam larutan Na₂SiO₃ 4%-v/v memiliki total volume pori sebesar 0,4272 cc/g dan pada SiO₂ dalam larutan Na₂SiO₃ 10%-v/v memiliki total volume pori sebesar 0,403 cc/g

Berikut radius pori rata-rata pada berbagai konsentrasi SiO₂ dalam larutan Na₂SiO₃ (4, 6, 8, dan 10%-v/v) yang sudah diubah kedalam bentuk grafik. Grafik pengaruh konsentrasi konsentrasi SiO₂ dalam larutan Na₂SiO₃ terhadap radius pori rata-rata penyangga yang dihasilkan ditunjukkan pada Gambar 7 di bawah.



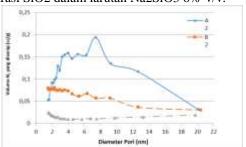
Gambar 7. Radius pori rata-rata γ -Al₂O₃-SiO₂ pada berbagai temperatur kalsinasi dan konsentrasi larutan Na₂SiO₃ (%-v/v SiO₂)

Pada Gambar 7 terlihat bahwa pengaruh konsentrasi SiO_2 dalam larutan Na_2SiO_3 yang ditambahkan dalam pembuatan penyangga γ - Al_2O_3 - SiO_2 terhadap radius pori rata-rata cenderung naik namun dengan nilai peningkatan yang tidak terlalu signifikan. Hal ini mungkin disebabkan karena perbedaan konsentrasi SiO_2 dalam larutan Na_2SiO_3 yang terlalu kecil sehingga pengaruhnya terhadap sifat pori penyangga γ - Al_2O_3 - SiO_2 juga kecil.

3.4 Pengaruh Temperatur Kalsinasi terhadap Kurva Adsorpsi dan Desorpsi Penyangga γ-Al₂O₃-SiO₂

Hasil yang dilaporkan pada uji sifat pori adsorben adalah kurva adsorpsi-desorpsi. Grafik adsorpsi-desorpsi gas N_2 terhadap penyangga γ - Al_2O_3 - SiO_3 disajikan pada Gambar 8. Uji BET ini dilakukan pada temperatur konstan dengan variasi tekanan. Terlihat jelas bahwa semakin tinggi temperatur kalsinasi maka penjerapan adsorbat semakin kecil dapat dilihat pada Gambar 8 dimana grafik (a) dengan temperatur 550°C memiliki nilai adsorpsi paling tinggi dibandingkan dengan temperatur 650°C (b) dan 750°C (c).

Gambar 8. Grafik adsorpsi dan desorpsi hasil analisa BET isoterm pada sampe A2, B2 dan C2 .


Berdasarkan Gambar 8 di atas grafik menunjukkan bahwa sampel penyangga γ -Al $_2$ O $_3$ -SiO $_2$ mengikuti model isoterm tipe III menurut klasifikasi dari Brauneur, Deming Deming, dan Teller (BDDT) yang menggambarkan sistem yang memiliki ukuran mesopori. Pembentukan kurva histerisis pada grafik isoterm adsorpsi-desorpsi gas N $_2$ pada penyangga terjadi karena adanya pembentukan mesopori. Adsorpsi pada permukaan mesopori memberikan

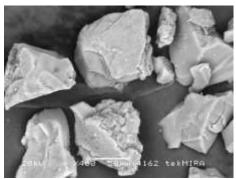
kecenderungan yang terjadi melalui pembentukan *multilayer* diikuti dengan kondensasi kapilar. Pada tekanan relatif rendah, pola adsorpsi menyerupai yang terjadi pada makropori, namun pada tekanan yang relatif tinggi jumlah gas yang teradsorpsi meningkat tajam oleh adanya kondensasi kapilar dalam mesopori. Kondensasi dan evaporasi kapilar terjadi pada tekanan relatif yang berbeda sehingga akan menunjukkan adanya *histerisis loop* (Nugraha dan Kulsum, 2017).

Berdasarkan IUPAC kurva histeris pada penyangga mengikuti tipe H3. Berdasarkan bentuk kurva histerisis ini dapat diketahui bentuk pori-pori pada sampel penyangga berbentuk celah. Adsorpsi isoterm dengan histerisis tipe H3 menandakan tidak adanya batasan adsorpsi pada P/Po yang tingi (Nugraha dan Kulsum, 2017). Penyangga γ -Al $_2$ O $_3$ -SiO $_2$ mempunyai bentuk kurva adsorpsi-desorpsi tipe III menurut BDDT yang mayoritas menggambarkan sistem yang memiliki ukuran mesopori diperkuat dengan hasil distribusi ukuran pori yang terlihat pada Gambar 9.

3.5 Distribusi Ukuran Pori

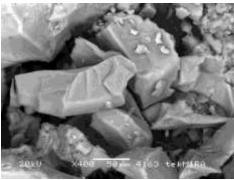
Distribusi ukuran pori menunjukkan ukuran diameter pori yang terdapat pada penyangga γ-Al₂O₃-SiO₂. Gambar di bawah merupakan grafik distribusi ukuran pori penyangga untuk setiap temperatur kalsinasi (550, 650, dan 750°C) pada konsentrasi SiO2 dalam larutan Na2SiO3 6%-v/v.

Gambar 9. Grafik *Pore Size Distribution* pada temperatur kalsinasi 550°C (A2), 650°C (B2), dan 750°C (C2)


Pada Gambar 9 menunjukan ukuran pori-pori yang terbentuk termasuk kedalam jenis *mesopores*. Ukuran m*esopores* antara 2 sampai 50nm, kurang dari 2nm termasuk *micropores* dan bila lebih 50nm termasuk *macropores*. Target dari penelitian ini adalah mendapatkan γ -Al₂O₃-SiO₂ *mesopores*, karena dengan ukuran *mesopores* katalis atau adsorben dapat melekat dengan baik pada γ -Al₂O₃-SiO₂ tanpa menutupi seluruh pori-pori, sedangkan *micropores* dapat menyebabkan pori-pori tertutup dan terjadi penumpukan dan *macropores* menyebabkan γ -Al₂O₃-SiO₂ akan mudah hancur (rapuh).

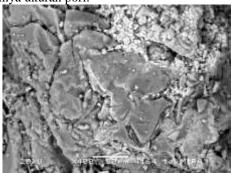
Penyangga γ-Al₂O₃-SiO₂ komersial juga hanya memiliki ukuran pori mesopore tetapi dengan distribusi yang lebih lebar yiatu 3-25 nm. Diameter pori rata-rata penyangga γ-Al₂O₃-SiO₂ hasil penelitian ini dan komersial hampi sama yaitu sekitar 6,634 nm. Alumina komersil umumnya membentuk *mesopores* secara stabil pada temperatur dibawah 500°C. Namun bila temperatur kalsinasi diatas 600 hingga 1000°C akan menghasilkan *irreversible phase* dan perubahan tekstur (Kosuge dan Ogata, 2010).

Naiknya temperatur kalsinasi menyebabkan menyebabkan diameter pori semakin turun. Volume pori juga otomatis terpengaruh dengan naiknya temperatur kasinasi. Diameter pori yang semakin kecil menyebabkan volume pori juga semakin kecil. Ini menunjukkan bahwa pori-pori pada γ-Al₂O₃-SiO₂ semakin mengecil dengan naiknya temperatur kalsinasi. Mengecilnya pori terjadi karena naiknya temperatur kalsinasi yang menyebabkan terjadinya proses pemadatan (densifikasi) selama fase kenaikan temperatur yang memungkinkan terjadinya perubahan struktur dan mikrostruktur, dimana partikel-pertikel saling mengikat sehingga ukuran butiran menjadi lebih besar.


3.6 Hasil Uji Morfologi dan Kekuatan Mekanik Penyangga γ -Al $_2$ O $_3$ -SiO $_2$

Sampel yang dianalisa dengan SEM adalah γ -Al $_2$ O $_3$ -SiO $_2$ dengan konsentrasi SiO $_2$ dalam larutan Na $_2$ SiO $_3$ (4%-v/v) dan 3 temperatur kalsinasi yang berbeda (550, 650, dan 750°C). Perbesaran yang digunakan sebesar 400 kali dengan skala gambar 0,1mm, sehingga didapatkan informasi mengenai bentuk dan ukuran partikel penyusun (morfologi), ciri-ciri permukaan dan tekstur (topografi), dan informasi mengenai susunan butir-butir dalam objek (kristalografi).

Gambar 10. Hasil SEM γ-Al₂O₃-SiO₂ dengan temperatur kalsisani 550°C


Pada Gambar 10 menunjukan karakterisasi dari $\gamma\textsc{-}Al_2O_3\textsc{-}SiO_2$ dengan temperatur kalsinasi 550°C pada skala 0,1 mm. Pada Gambar 4.10 terlihat ukuran pori-pori yang besar dengan bentuk yang tidak teratur. Permukaanya terlihat sedikit kasar. Pada temperatur 550°C terlihat penyangga memiliki persebaran butir yang cukup merata (Widyantoro, 2013). Jarak antar butir juga terlihat cukup jauh satu dengan yang lain sehingga ukuran pori menjadi besar.

Gambar 11. Hasil SEM γ -Al₂O₃-SiO₂ dengan temperatur kalsinasi 650°C

Pada Gambar 11 menunjukan karakterisasi dari γ -Al $_2$ O $_3$ -SiO $_2$ dengan temperatur kalsinasi 650°C pada skala 0,1mm. Pada gambar tersebut terlihat pori-pori yang lebih banyak dengan ukuran yang lebih kecil dibandingkan dengan hasil

temperatur kalsinasi 550°C dengan bentuk yang tidak teratur. Permukaanya juga terlihat lebih kasar. Pada temperatur 650°C penyangga memiliki persebaran butir yang tidak merata dan mulai terjadi penggumpalan (Widyantoro, 2013). Semakin tinggi temperatur kalsinasi, maka semakin besar ukuran butir penyangga γ-Al₂O₃-SiO₂ disertai dengan mengecilnya ukuran pori.

Gambar 12. Hasil SEM γ -Al₂O₃-SiO₂ dengan temperatur kalsinasi 750°C

Pada Gambar 12 dibawah menunjukan karakterisasi dari γ-Al₂O₃-SiO₂ dengan temperatur kalsinasi 750°C pada skala 0,1mm. Pada gambar tersebut terlihat sangat banyak poripori dengan ukuran yang lebih kecil dibandingkan dengan ukuran pori-pori hasil kalsinasi 650°C. Permukaanya terlihat sangat kasar dengan bentuk yang tidak teratur. Pada temperatur 750°C semakin jelas terlihat bahwa selama fase kenaikan temperatur kalsinasi terjadi proses pemadatan (desinfikasi), yang menyebabkan perubahan struktur dan mikrostruktur, dimana partikel-partikel saling mengikat sehingga ukuran butiran menjadi lebih besar dan menutupi seluruh permukaan. Dengan kata lain, ukuran pori berkurang (mengecil), seperti terlihat pada Gambar 12 (Dahliana, 2012). Perubahan bentuk dan ukuran butir hasil kalsinasi disebabkan oleh transformasi fase (Widyantoro, 2013). Pada kasus alumina, pada temperatur tinggi γ-Al₂O₃ mulai berubah fase menjadi α-Al₂O₃ dimana pada fase α(alpha) alumina memiliki luas permukaan dan ukuran pori yang jauh lebih kecil (Mardkhe, 2014).

Kekuatan mekanik dari γ -Al₂O₃-SiO₂ yang dihasilkan dengan temperatur kalsinasi 550°C memiliki nilai yang lebih kecil dibandingkan dengan kekuatan mekanik penyangga γ -Al₂O₃-SiO₂. Sampel penyangga γ -Al₂O₃-SiO₂ 550°C diuji menggunakan alat uji kekukatan mekanik penyangga dan didapat kekutan mekanik sampel sebesar 0,2026 kg/mm, sedangkan kekuatan mekanik penyangga komersil memiliki nilai sebesar 1,52 kg/mm (Ulfa dan Subagjo, 2012). Hal ini mungkin disebabkan karena ikatan antara partikel-partikel alumina dan silika tidak kompak sehingga mengurangi kekuatan.

Peningkatan kekuatan dapat dilakukan dengan cara menambahkan senyawa lain kedalam penyangga. Ulfa dan Subagjo (2012) melakukan penelitian pembuatan penyangga alumina dengan penambahan asam nitrat dan mendapatkan hasil bahwa semakin tinggi konsentrasi asam nitrat, kekuatan mekanik alumina bertambah. Ulfa dan Subagjo (2012) mendapatkan hasil kekuatan mekanik penyangga tertinggi pada rasio mol HNO₃/AlOOH 0,026 dengan nilai 0,5 kg/mm. Peningkatan jumlah asam nitrat mungkin menyebabkan ikatan antara partikel-partikel alumina semakin kompak dan menambah kekuatan.

Alasan lain juga mungkin disebabkan karena jumlah SiO_2 yang terlalu banyak dalam sampel penyangga γ - Al_2O_3 - SiO_2 . Penambahan SiO_2 yang terlalu banyak dapat mengurangi kekuatan penyangga γ - Al_2O_3 - SiO_2 yang dihasilkan. Meningkatkan temperatur kalsinasi juga dapat menaikkan kekuatan mekanik penyangga karena seiring dengan naiknya temperatur kalsinasi terjadi proses desinfikasi (pemadatan) dimana partikel-partikel saling mengikat dan menjadi lebih kompak. Namun karena proses desinfikasi ini luas permukaan dan volume pori dari sampel menjadi lebih kecil dan tidak cocok untuk dijadikan penyangga. Penyangga γ - Al_2O_3 - SiO_2 yang ingin kami dapatkan dari hasil penelitian ini adalah penyangga dengan luas permukaan dan volume pori yang besar agar adsorben yang melekat pada penyangga lebih banyak.

4. Kesimpulan

- Penambahan larutan Na₂SiO₃ (4, 6, 8, dan 10%-v/v SiO₂) tidak memberikan pengaruh yang signifikan terhadap karakteristik penyangga γ-Al₂O₃-SiO₂.
- Setiap kenaikan temperatur kalsinasi mempengaruhi karakteristik penyangga γ-Al₂O₃-SiO₂ meliputi menurunnya luas permukaan dan total volume pori, meningkatnya radius pori rata-rata, dan menurunnya adsorpsi-desorpsi N₂.
- 3) Luas permukaan berbanding lurus dengan total volume pori. Semakin tinggi luas permukaan maka semakin tinggi pula total volume pori penyangga γ-Al₂O₃-SiO₂. Luas permukaan yang besar dapat menyebabkan penyangga γ-Al₂O₃-SiO₂ memiliki tingkat kekuatan mekanik yang rendah (mudah hancur).
- 4) Luas permukaan dan total volume pori yang besar dapat memberikan lahan penebaran fasa aktif yang besar kepada adsorben. Semakin banyak adsorben yang menempel pada penyangga dapat memperbesar luas permukaan dan fasa aktif sehingga adsorben dapat bekerja lebih efektif.
- Luas permukaan terbaik didapatkan pada temperatur kalsinasi 550°C dengan luas permukaan terbesar yaitu 293,724 m²/g.
- 6) Total volume pori terbaik didapatkan pada temperatur kalsinasi 650°C sebesar 1,113 cc/g.
- 7) Hasil γ -Al₂O₃-SiO₂ terbaik yang didapat adalah A2 (temperatur kalsinasi 550°C dan 6% larutan SiO2) dengan luas permukaan 293,724 m²/g dan total volume pori 0,9743 cc/g.

Ucapan Terima Kasih

Penulis diharapkan menuliskan ucapan terima kasih kepada pihak yang telah memberikan kontribusi dalam penyelesaian artiklenya. Ucapan terima kasih kepada Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Sriwijaya yang telah memberikan Hibah Penelitian Kompetitif ini.

Daftar Pustaka

- Abdullah, H. (2012). Pembuatan dan Karakterisasi serta Aplikasi Katalitik Konverter untuk Filter Gas Buang Kendaraan Bermotor Bahan Bakar Premium. Medan: Fakultas Matematika dan Ilmu Pengetahuan Alam USU.
- Bahrin, D., Susanto H., dan Subagjo. (2015). Effect of Regenration Temperature on Particle Characteristics and Extent of Regeneration of Saturated SO₂-Adsorption of CuO/γ-Al₂O₃ Adsorbent. Bandung: Department of Chemical Engineering, Institut Teknologi Bandung.

- Bahrin, D., Susanto H., dan Subagjo. (2016). *Preparation, Characterization, Adsorption and Regeneration Test of CuO/γ-Al₂O₃ Adsorbent for SO₂ Removal from Flue Gas in Coal-Fired Steam Power Plant.* Vung Tau City: Regional Symposium on Chemical Engineering.
- Bahrin, D. (2017). Adsorpsi SO₂ dengan adsorben CuO/γ-Al₂O₃ dalam reaktor unggun diam. Disertasi Program Doktor, Institut Teknologi Bandung.
- Bahrin, D., Susanto H., dan Subagjo. (2017). Reduction of SO₂
 Emission using CuO/γ-Al₂O₃ Adsorbent: Case Study on Combustion of Algae Biomass Having High Sulfur Content.
 Japan: Asian Conference on biomass Science.
- Bawa, S.G., Ahmed A.S. dan Okonkwo P.C. (2016). Synthesis of Gamma-Alumina from Kankara Kaolin as Potential Zeolite Active Matrix. Nigerian Journal of Basic and Applied Science (December, 2016), 24(2): 66-72.
- Dahliana, D., Sembiring S. Dan Simanjuntak W. (2012). Pengaruh Temperatur Sintering Terhadap Karakteristik Fisis Komposit MgO-SiO₂ Berbasis Silika Sekam Padi. Bandar Lampung: Jurusan Fisika Bidang Material FMIPA, Jurusan Kimia FMIPA.
- Djayanti, S., Purwanto dan Sasongko S.B. (2011). Pengendalian Emisi Gas Buang Boiler Batubara dengan Sistem Absorbsi. Jurnal Ilmu Lingkungan Vol.9, No.1, April 2011.
- Figza, A., dan Andy B. (2014). *Sintesis dan Karakterisasi ZSM-5 untuk Komponen Katalis FCC*. Bandung: Teknik Kimia Fakultas Teknologi Industri ITB.
- Fajrina, A. (2010). 5 Tipe Kurva Adsorpsi Isotermis Langmuir dan BET. Jakarta: Fakultas Teknik Universitas Indonesia.
- Hosseini, S. A., Niael A. dan Salari D. (2011). *Production of* γ - Al_2O_3 *from Kaolin*. Open Journal of Physical Chemistry, 2011, 1, 23-27.
- Huda, M dan Hastuti E. (2012). *Pengaruh Temperatur Pembakaran dan Penambahan Abu Terhadap Kualitas Baru Bata*. Malang: Jurusan Fisika Fakultas Sains dan Teknologi UIN Maliki.
- Irawati, U., Sunardi dan Suraida. (2013). Sintesis dan Karakterisasi Gamma Alumina (γ -Al₂O₃) dari Kaolin Asal Tatakan, Kalimantan Selatan Berdasarkan Variasi Temperatur Kalsinasi. Jurnal Molekul, Vol. 8. No. 1. Mei, 2013: 31 42.
- Mahmudah, R. (2017). Sintesis dan Karakterisasi Nanokomposit TiO₂/Zeolit Alam Malang dengan Variasi Konsentrasi HNO₃. Malang: Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Ibrahim.
- Mardkhe, M.K., Woodfield B.F, Bartholomew C.H. dan Huang B. (2014). *Method of Making Highly Porous, Stable Aluminum Oxides Doped with Silicon*. Provo: Brigham Young University.
- Mardkhe, M.K., Woodfield B.F, Bartholomew C.H., Huang B. dan Alam T.M. (2015). Synthesis and characterization of silica doped alumina catalyst support with superior thermal stability and unique pore properties. Springer New York, 21 Nov 2015.
- Nugraha, I dan Kulsum U. (2017). Sintesis dan Karakterisasi Material Komposit Kaolin-ZVI (Zero Valent Iron) serta Uji Aplikasinya sebagai Adsorben Kation Cr (VI). Yogyakarta: Program Studi Kimia Fakultas Sains dan Teknologi UIN Sunan Kalidjaga.
- Perego, C., dan Villa P. (1997). *Cataylyst Preparation Methods*. Milano: Department of Industrial Chemistry and Chemical Engginering.
- Rohman, M.N.K, dan Maharani D.K. (2014). Sintesis dan Karakterisasi Padatan Silika-Alumina dengan Variasi

- Temperatur Kalsinasi sebagai Pendukung Katalis Campuran Oksida Logam Cu/Zn. UNESA Journal of Chemistry Vol.3, No.2,May 2014.
- Samadhi, T.W. dan Nurfahmiawati T. (2007). *Sintesis γ-Alumina Sebagai Penyangga Katalis*. Bandung: Institut Teknologi Bandung.
- Sugiyono, A., Anindhita, Wahid, L.M.A., dan Adiarso. (2016). *Outlook energi Indonesia 2016*. Pusat Teknologi Sumber Daya Energi dan Industri Kimia (PTSEIK) BPPT, Jakarta.
- Sun, Z., Zheng T.T., Bo Q., Du M. dan Forsling W. (2007). Effects of Calcination Temperature on The Pore Size and Wall Crystalline Structure of Mesoporous Alumina. Jinan: School of Chemistry and Chemical Engineering, University of Jinan.
- Ulfa, M., dan Subagjo. (2012). Pengaruh Perbedaan Sifat Penyangga Alumina terhadap Sifat Katalis Hydrotreating Berbasis Nikel-Molibdenum. Reaktor, Vol.14 No.2, Oktober 2012, Hal 151-157.
- Widyantoro, A.T.T. dan Susanti D. (2013). Pengaruh Variasi Temperatur Kalsinasi Terhadap Sifat Kapasitif Kapasitor Elektrokimia Tungsten Trioksida (Wo₃) Hasil Sintesa Sol Gel. Surabaya: kampus ITS, Keputih.
- Yuono, Bahrin, D., Susanto H., dan Subagjo. (2015). Preparation and Characterization of CuO/γ-Al2O3 for Adsorption of SO2 in Flue Gas. Bandung: Department of Chemical Engineering, Institut Teknologi Bandung.