

Seminar Nasional Keinsinyuran (SNIP)

Alamat Prosiding: snip.eng.unila.ac.id

KAJIAN DAN PERHITUNGAN ENERGI LISTRIK UNTUK MENENTUKAN EFISIENSI PADA TURBIN MIKROHIDRO BERBASIS PERCEPATAN GRAFITASI BUMI

Akhmad Dzakwan^{a*}, Suharno^b

^aJurusan Teknik Lingkungan Fakultas Teknik Universitas Lampung jala n S Brojonegoro 1 Bandar Lampung 35145

^bProgram Profesi Insinyur Universitas Lampung jalan Prof Sumantri B rojonegoro I Bandar Lampung 35145

INFORMASI ARTIKEL

ABSTRAK

Riwayat artikel: Diterima: 2 Maret 2022 Direvisi: 16 Maret 2022 Diterbitkan : 24 April

2022

Kata kunci:

Grafitasi Bumi Ketinggian, Generator mikrohidro Energi Listrik Energi Potensial Energi Kinetik

Generator listrik mikrohidro bertenaga air merupakan salah satu bentuk pembangkit listrik mikrohidro yang sangat diperlukan di negara kita yang akan sungai. Generator listrik mikrohidro adalah alat yang digunakan untuk mengubah energi kinetik atau potensial grafitasi Bumi menjadi energi listrik. Hal ini terjadi karena adanya energi potensial air yang jatuh pada permukaan turbin generator mikrohidro. Energi listrik yang dihasilkan ditentukan oleh besarnya energi potensial ketika air jatuh -pada permukaan turbin generator mikrohidro, karena itu posisi air, volume air dan grafitasi Bumi serta efisiensi generator mikrohidro sangat menentukan . Dalam penelitian ini digunakan data percepatan grafitasi yang ada dilaboratorium mekanika yaitu $g = 9.8 \text{ m/s}^2$, kemudian dengan menggunakan air yang bermassa tertentu dari ketinggian yang bervariasi dijatuhkan air pada permukaan turbin generator mikrohidro diketahui efisiensinya. Hasilnya untuk variasi sebelumnya tidak ketinggian h=(1-5,5)m berada pd range E= (0,07933-0,45815)k.V.A.S, untuk variasi ketinggian h = (5-100)m berada pada range E = (166,6 - 3332))k.V.A.S dan variasi Volume V=(2-40)m³ berada pd range (41,65-833)k.V.A.S memiliki efisiensi 85%

1. Pendahuluan

Percepatan Grafitasi bumi adalah merupakan sebuah besaran vektror yang arah geraknya menuju inti bumi, hal ini merupakan salah satu sifat yang dimiliki oleh bumi yang sangat penting bagi kehidupan manusia. Percepatan Grafitasi bumi memberi akibat setiap benda yang berada dibumi ini akan selalu mengalami gaya grafitasi yang arahnya menuju pusat bumi. Besarnya percepatan grafitasi bumi diatas permukaan bumi tergantung pada jarijari bumi dan susunan batuan yang ada dibawah permukaan bumi. Apabila tempat yang bersangkutan berada pada jarak yang semakin dekat dengan bumi maka tempat itu akan semakin besar percepatan grafitasinya.

2. Tujuan

- 1. Mengetahui besar efisiensi generator mikrohidro yang di produksi oleh sebuah
- 2. Mengetahui besar energi listrik generator mikrohidro yang berbasis pada percepatan grafitasi Bumi $g = 9.8 \text{ m/s}^2$
- 3. Mengetahui garfik hubungan antara volume air vs output energi listrik yang setara energi

kinetik akibat percepatan grafitasi

- 4. Mengetahui garfik hubungan antara posisi ketinggian air vs output energi listrik generator mikrohidro sebagai kesetaraan energi kinetik akibat akibat adanya percepatan grafitasi
- Mendapatkan data energi listrik sebagai data acuan dalam menghitung efisiensi generator mikrohidro

3. Tinjauan Pustaka

3.1. Persamaan Gaya antar Benda

..
$$F = G \frac{m_1 m_2}{r^2}$$
(1)

Dengan:

F = gaya grafitasi Newton (N)

m1 = massa benda I (kg)

m2 = massa benda II (kg)

G = konstanta gravitasi umum = 6.673 x 10-11Nm2/kg2

R = jarak antara pusat kedua benda (m)

3.2 Percepatan Akibat Gravitasi Bumi

Hukum Newton tentang gaya

$$F = m.a$$
(2)

Persamaan (2) sama dengan Pers (1) disubsituasi menghasilkan Pers (3)

$$m.a = \underline{G.M.m}$$

$$a = \frac{G.M}{r^2} \tag{3}$$

Dengan:

 $a = Percepatan linier (m/s^2)$

M = Massa Bumi (kg)

m = Massa benda dipermukaan Bumi (kg)

r = jarak Bumi dengan benda (m)

Percepatan di atas sering disebut juga percepatan akibat gravitasi Bumi

$$g = \frac{G.M}{r^2}....(4)$$

sedangkan hubungan antara gaya grafitasi F dengan medan grafitasi g dapat dirumuskan :

$$F = m.g$$
(5)

Apabila sebuah massa air m kg jatuh pada ketinggian h dipermukaan bumi maka energi potensial Ep yang ditimbulkan adalah :

Dengan:

Ep = Energi potensial (Joule)

m = masaa benda (Kg)

g = Percepatan grafitasi bumi (m/s²)

h = Ketinggian benda dipermukaan Bumi (meter)

Energi listrik merupakan energi yang diperoleh bila kumparan memotong medan magnet atau sebaliknya bila medan magnet memotong kumparan. Proses yang demikian terjadi didalam generator mikro hidro. Suatupembangkit listrik yang dihasilkan dengan cara turbin yang memiliki bolang baling yang sifatnya radial berputar akibat adanya air yang jatuh pada bolang balingnya yang memutar generator listrik dimana didalam generator ini terdapat kumparan yang melilit pada rotor (bagian generator yang dapat berputar).

Adapun sumber medan magnetnya berasal dari magnet tetap yang berada pada bagian stator, menurut Faraday besarnya ggl induksi yang terjadi akibat kumparan yang memotong medan magnet adalah

$$E = N.d\phi/dt....(7)$$

Dengan:

E = Tegangan (volt)

N = Jumlah lilitan yang memotong medan magnet

dφ= Perubahan Fluk magnet (Gaus)

dt = Perubahan waktu (sekon)

Bila sebuah generator berputar dengan kecepatan sudut ω , jumlah lilitan N, kuat medan magnet B dan luas kumparan A, maka berlaku persamaan

$$E = \omega.A.N.Sin \omega. t \dots (8)$$

Dengan:

E = Tegangan yang dihasilkan dari perputaran generator (volt)

4. Alat dan Bahan

4.1.Alat

Alat yang digunakan dalam penelitian ini

- > Komputer
- Generator mikrohidro
- Grafity meter
- > Stop Watch

4.2. Bahan

Bahan yang digunakan dalam penelitian ini

- Air
- ➤ Benang
- > Beban

5. Metode yang digunakan:

5.1. Mencari Percepatan Gravitasi Bumi

Cara pertama dalah mencari percepatan grafitasi bumi : yaitu dengan menggunakan pendulum yang diayunkan, kemudian dihitung periode ayunan pendulum serta sudut ayunan, dengan menggunakan hubungan persamaan

$$T = 2.\pi$$
. V 1/g....(9)

Dengan:

T = lama pendulum mengayun 1 gelombang penuh (1/sekon)

 $\pi = 3,14$

l = Panjang ayunan (meter)

g = Percepatan grafitasi bumi (m/s²)

Cara yang ke dua adalah dengan menggunakan grafity meter, setelah didapatkan data g.

5.2. Menghitung massa air.

Bila air setinggi 15 m jatuh pada bolang baling turbin perdetiknya adalah bervolume 1m³, maka jumlah massa air yang menimbulkan energi potensial adalah

$$m = V. P....(10)$$

Dengan:

m = massa air (kg)

 $V = Volume air (m^3)$

 $\rho = \text{massa jenis air} (1000 \text{Kg/m}^3)$

5.3. Menghitung Energi Potensial air yang setara dengan energi kinetik

6.HASIL DAN PEMBAHASAN

6.1.Data Hasil Pengamatanl

Data Pendahuluan

Tabel data hasil pengamatan Energi Listrik dengan Ketinggian Bervariasi Untuk Air Yang bermassa m = 1 kg dan g = 9.8 m/s^2

No	Tinggi	Massa	g = 9,8	E.Potensial	Energi	Energi
	Air	Air	m/s ²	(Joule)	Liistrik	Listrik
	(m)	(kg)			(k.VA.S)	(K.AV.S)
1	1	10	9,8	98	0,098	0,0833
2	1,5	10	9,8	147	0,147	0,12495

Tabel 1 Data Hasil Pengamatan dan Perhitungan dari Volume air Massa Air padauntuk h=10 meter, g=9.8 m/s 2

No	Vol Air	Massa	Ep	Energi Listrik	Efisiensi
INO	(m ³)	Air (Kg)	(Juole)	(K.VA.S)	(K.VA.S)
1	2	2000	196000	196	166,6
2	4	4000	392000	392	333,2
3	6	6000	588000	588	499,8
4	8	8000	784000	784	666,4
5	10	10000	980000	980	833
6	12	12000	1176000	1176	999,6
7	14	14000	1372000	1372	1166,2
8	16	16000	1568000	1568	1332,8
9	18	18000	1764000	1764	1499,4
10	20	20000	1960000	1960	1666
11	22	22000	2156000	2156	1832,6
12	24	64000	6272000	6272	5331,2
13	26	26000	2548000	2548	2165,8
14	28	28000	2744000	2744	2332,4

Dari sini akan didapatkan bahwa setiap air yang bervolume 1m³ jatuh pada permukaan turbin, adalah sama dengan air yang bermassa 1000 Kg (1ton) jatuh pada turbin, sehingga menimbulkan energi potensial sebesar. Berlaku hukum kekekalan Energi

Ep1 + EK1 = Ep2 + Ek2
mgh +
$$\frac{1}{2}$$
 mv² = mgh2 + $\frac{1}{2}$ mv²
EK₂ = Ep₁ = m.g.h
EK₂=Ep₁ = 1000. 9,8. 15. Kg.m/s².m
EK₂=Ep₁ = 147000 Joule

5.4. Kesetaraan Energi Listrik dengan Energi Potensial air.

Sedangkan energi EL listrik yang dihasilkan adalah setara dengan Energi potensial diatas yaitu

EL = 147000 Joule

EL = 147.000 watt.detik

EL = 147 K.V.A.S (Kilo Volt Ampere.detik)

Dengan membandingkan energi potensial yang dihasilkan oleh air (energi kinetik) dengan energi listrik yang dihasilkan oleh generator mikrohidro akan didapatkan efisiensi generator mikrohidro

Efisiensi =
$$EL/Ep$$

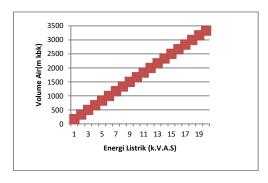
= EL/Ek

Dengan

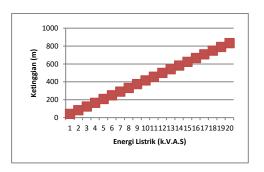
EL = Energi Listrik (Joule) Ep = Energi Potensial (Joule) Ek = Energi Kinetik (Joule)

3	2	10	9,8	196	0,196	0,1666
4	2,5	10	9,8	245	0,245	0,20825
5	3	10	9,8	294	0,294	0,2490
6	3,5	10	9,8	343	0,343	0,29155
7	4	10	9,8	392	0,394	0,3332
8	4,5	10	9,8	441	0,441	0,37485
9	5	10	9,8	490	0,490	0,4165
10	5,5	10	9,8	539	0,539	0,45815

15	30	30000	2940000	2940	2499
16	32	32000	3136000	3136	2665,6
17	34	34000	3332000	3332	2832,2
18	36	36000	3528000	3528	2998,8
19	38	38000	3724000	3724	3165,4
20	40	40000	3020000	3030	3333


Tabel 2 Data Hasil Pengamatan dari Ketinggian dan masa Air Pada Volume = 1 m³, g = 9,8 m/s² mikrohidro

No	Tinggi Air (m)	Massa Air (Kg)	Ep (Juole)	Energi Listrik (K.VA.S)	Efisiensi (K.VA.S)
1	5	1000	49000	49	41,65
2	10	1000	98000	98	83,3
3	15	1000	147000	147	124,95
4	20	1000	196000	196	166,6
5	25	1000	245000	245	208,25
6	30	1000	294000	294	249,9


7	35	1000	343000	343	291,55
8	40	1000	392000	392	333,2
9	45	1000	441000	441	374,85
10	50	1000	490000	490	416,5
11	55	1000	539000	539	458,15
12	60	1000	588000	588	499,8
13	65	1000	637000	637	541.45

14	70	1000	686000	686	583,1
15	75	1000	735000	735	624,75
16	80	1000	784000	784	666,4
17	85	1000	833000	833	708,05
18	90	1000	882000	882	749,7
19	95	1000	951000	931	791,35
20	100	1000	980000	980	833

Grafik Data Tabel I dan II Grafik Hubungan volume air vs Energi listrik Pada turbin mikro hidro

Gambar 1 : Grafik 1 Hubungan antara Volume Air Vs Energi Listrik Turbin Mikrohidro

Gambar 2 : Grafik 2 Hubungan antara Ketinggian Posisi air vs Energi Listrik Turbin Mikrohidro

6.2. Pembahasan

Dari grafik 1 hubungan antara volume air dengan energi listrik yang dihasilkan oleh turbin terdapat hubungan limier, artinya ketika terjadi kenaikan volume air maka akan diikuti pula kenaikan keluaran energi listrik generator. Kenaikan ini terjadi secara signifikan karena energi potensial yang dihasilkan oleh air hanya bergantung pada fungsi ketinggian h, bila ketinggian mengalami perubahan maka jelas energi listrik yang dihasilkan oleh generator akan berubah. Volume air juga merupakan salah satu faktor pemicu perubahan energi listrik yang dihasilkan generator, misalkan suatu saat akan terjadi pengurangan volume air bila terjadi kemarau panjang maka grafik hubungan antara volume air dengan energi listrik yang dihasilkan oleh generator pasti akan turun, sebaliknya bila suatu saat terjadi kenaikan volume air sebagai akibat adanya hujan lebat maka grafik hubungan antara volume air dengan energi listrik yang dihasilkan oleh generator pasti akan naik. Adapun percepatan grafitasi akan memberikan pengaruh pada energi listrik yang dihasilkan oleh generator bila terjadi perpindahan tempat yang memiliki konstanta grafitasi yang berbeda, hal ini tentunya berkaitan dengan struktur batuan dibawah permukaan dan ketinggian suatu tempat. Efisiensi generator akan memberikan pengaruh pada keluaran energi listrik, bila kerja dari generator menurun karena faktor usia atau adanya kerusakan pada bagian bolang baling turbin.

Dari grafik 2 diatas yang menyatakan hubungan antara ketinggian posisi air jatuh pada turbin mikro hidro dengan energi listrik yang dihasilkan oleh generator adalah linier. Faktor yang berpengaruh langsung pada perubahan kenaikan dan penurunan grafik diatas adalah ketinggian posisi air, perubahan ketinggian dilakukan dengan cara mengubah posisi generatornya serta volume air yang bisa menyebabkan perubahan massa air yang jatuh pada pemukaan turbin mikro hidro.

4.KESIMPULAN

- Besar efisiensi generator mikrohidro yang di Product oleh sebuah industri Ef = 83,25%
- 2. Besar energi Listrik generator mikrohidro yang berbasis pada percepatan grafitasi Bumi $g = 9.8 \text{ m/s}^2$

EL min = 166,6 k.V.A.S dan EL max = 833 k.V.A.S

EL min = 41,65 k.V.A.S dan EL max = 666,4 k.V.A.S

- Garfik hubungan antara volume air vs output energi listrik yang Setara EP Volume air berbanding lurus dengan output energi listrik
- Garfik hubungan antara posisi ketinggian air vs output energi listrik Generator microhidro sebagai kesetaraan EP Ketinggian air berbanding lurus dengan output energi listrik
- 5. Data energi listrik sebagai data acuan dalam menghitung efisiensi generator

mikrohidro berbasis pada energi grafitasi Bumi yang setara dengan output energi listriknya

Ucapan Terimakasih

Kami smpaikan kepada Ikatan Insinyur indonesia terutama pada disiplin ilmu ini,m\ mungkin dapat memberikan masukan sebagai penyempurnaan riset lanjutan

7. DAFTAR PUSTAKA

Blocher, R.,(2019), Dasar Dasar elektronika, Elex Kompentindo, Jakarta

Dwi, Herman..(2019), Elektronika Lanjut untuk mahasiswa., Bandung

Fadeli., (1984)., *Elektonika Dasar I FMIPA*, Universitas Gajah Mada, Jogjakarta.

Halliday, D & Resnick, R.,(1999), Physics, John wiley & Sons Inc, New York, USA.

Sugiarto, R., 1999, *Tranduser dan Sensor*, Kanisius, Jogjakarta.

Sumijokartono, (1990), Elektronik Praktis, Elex Media Kompentindo, Jakarta.

Sutrisno., (1995), *Fisika Dasar II Listrik dan Magnet*, ITB, Bandung.

William, D.C.,(1978), Elektronics Instrumentation and Measurement, Techniques MC Graw Hill Inc, New Jersey, USA.

Wiliam, D.C., (1999), Instrumentasi Elektronik dan Teknik Pengukuran, MC Graw Hill Inc, New Jersey, USA.

Design Planing of Micro Hidro

Power Plant in Hink River., International Journal of Engineering and advance Technology (2012), www Science Direct. Com(25 Maret 2022, Pukul 15.00 wib)

Developing Teaching on The Use of Micro Hydro Generator., Journal UNY.ac.id (28 maret 2022, Pukul 8.00 WIB)

Simple Micro Hydro Uses Water as a Renewable Energy Source., Ejournal.UPI. Edu (26 Maret, Pukul 10.00 WIB)

Modelling And Analysis of Dinamo., ejournal.Undip.ac.id (27 Maret 2022, Pukul 13.30 WIB)